skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiao, Jun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Crucial to plant development, ambient temperature triggers intricate mechanisms enabling adaptive responses to temperature variations. The precise coordination of chromatin modifications in shaping cell developmental fate under diverse temperatures remains elusive. Our study, integrating comprehensive transcriptome, epigenome profiling, and genetics, demonstrates that lower ambient temperature (16°C) partially restores developmental defects caused by H3K27me3 loss in prc2 mutants by specifically depositing H2A.Zub at ectopically expressed embryonic genes in Arabidopsis, such as ABA INSENSITIVE 3 (ABI3) and LEAFY COTYLEDON 1 (LEC1). This deposition leads to downregulation of these genes and compensates for H3K27me3 depletion. Polycomb-repressive complex 1 (PRC1)-catalyzed H2A.Zub and PRC2-catalyzed H3K27me3 play roles in silencing transcription of embryonic genes for post-germination development. Low-temperature-induced reduction of TOE1 protein level decelerates H2A.Z turnover at specific loci, sustaining repression of embryonic genes and alleviating requirement for PRC2-H3K27me3 at post-germination stage. Our findings offer mechanistic insights into the cooperative epigenetic layers, facilitating plant adaptation to varying environmental temperatures. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available February 27, 2026
  3. Massive submarine basalt flows were sampled at five sites on the Tristan‐Gough‐Walvis hotspot track in the South Atlantic by International Oceanic Discovery Program Expeditions 391/397T, where the plume was interacting with a mid‐ocean ridge, a setting similar to that the of modern Iceland. High resolution XRF core scans document significant internal chemical variations with depth in these flows. Some of this reflects basal olivine accumulation. However, some examples have “scallop‐shaped” patterns that are interpreted to represent influxes of new magma during flow lobe inflation with successive lava injections focused toward the base of the flow unit. Olivine concentration in the deeper parts of the flow is interpreted to reflect top‐down tapping of a vertically zoned magma chamber, with the upper part of the chamber erupting first, and successive eruptive pulses tapping progressively deeper levels of the stratified chamber. The occurrence of massive submarine lava flows requires high eruptive fluxes relative to pillow lava formation. Propagation of these massive flows is favored by (a) high sea water confining pressures, which inhibit vesiculation and keep effective viscosity low and dissolved volatile content high, and (b) chill zones and thick viscoelastic crusts of quenched lava on the flow tops, which effectively insulate the flow interior from ambient temperatures. The formation of a thin film of super‐heated steam on the upper flow surface may similarly enhance the insulation. Evidence suggests that similar massive flows on the seafloor may extend many kilometers from their vents. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Free, publicly-accessible full text available March 1, 2026
  5. Soil carbon loss is likely to increase due to climate warming, but microbiomes and microenvironments may dampen this effect. In a 30-year warming experiment, physical protection within soil aggregates affected the thermal responses of soil microbiomes and carbon dynamics. In this study, we combined metagenomic analysis with physical characterization of soil aggregates to explore mechanisms by which microbial communities respond to climate warming across different soil microenvironments. Long-term warming decreased the relative abundances of genes involved in degrading labile compounds (e.g., cellulose), but increased those genes involved in degrading recalcitrant compounds (e.g., lignin) across aggregate sizes. These changes were observed in most phyla of bacteria, especially for Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes. Microbial community composition was considerably altered by warming, leading to declined diversity for bacteria and fungi but not for archaea. Microbial functional genes, diversity, and community composition differed between macroaggregates and microaggregates, indicating the essential role of physical protection in controlling microbial community dynamics. Our findings suggest that microbes have the capacity to employ various strategies to acclimate or adapt to climate change (e.g., warming, heat stress) by shifting functional gene abundances and community structures in varying microenvironments, as regulated by soil physical protection. 
    more » « less
  6. Abstract The field of synthetic biology and biosystems engineering increasingly acknowledges the need for a holistic design approach that incorporates circuit-host interactions into the design process. Engineered circuits are not isolated entities but inherently entwined with the dynamic host environment. One such circuit-host interaction, ‘growth feedback’, results when modifications in host growth patterns influence the operation of gene circuits. The growth-mediated effects can range from growth-dependent elevation in protein/mRNA dilution rate to changes in resource reallocation within the cell, which can lead to complete functional collapse in complex circuits. To achieve robust circuit performance, synthetic biologists employ a variety of control mechanisms to stabilize and insulate circuit behavior against growth changes. Here we propose a simple strategy by incorporating one repressive edge in a growth-sensitive bistable circuit. Through both simulation and in vitro experimentation, we demonstrate how this additional repressive node stabilizes protein levels and increases the robustness of a bistable circuit in response to growth feedback. We propose the incorporation of repressive links in gene circuits as a control strategy for desensitizing gene circuits against growth fluctuations. 
    more » « less